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Abstract. Light-field fluorescence microscopy (LFM) is a powerful elegant compact method for long-term high-
speed imaging of complex biological systems, such as neuron activities and rapid movements of organelles.
LFM experiments typically generate terabytes of image data and require a substantial amount of storage
space. Some lossy compression algorithms have been proposed recently with good compression
performance. However, since the specimen usually only tolerates low-power density illumination for long-
term imaging with low phototoxicity, the image signal-to-noise ratio (SNR) is relatively low, which will
cause the loss of some efficient position or intensity information using such lossy compression algorithms.
Here, we propose a phase-space continuity-enhanced bzip2 (PC-bzip2) lossless compression method for
LFM data as a high-efficiency and open-source tool that combines graphics processing unit-based fast
entropy judgment and multicore-CPU-based high-speed lossless compression. Our proposed method
achieves almost 10% compression ratio improvement while keeping the capability of high-speed
compression, compared with the original bzip2. We evaluated our method on fluorescence beads data
and fluorescence staining cells data with different SNRs. Moreover, by introducing temporal continuity, our
method shows the superior compression ratio on time series data of zebrafish blood vessels.
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1 Introduction
Light-field fluorescence microscopy (LFM) serves as an elegant
compact solution to long-term high-speed volumetric micros-
copy due to its low photobleaching and simultaneous 3D imag-
ing and is suitable for biological applications such as neuron
activity observing1–3 and high-speed organelle tracking.4–6 The
data acquired from LFM experiments have multiple dimensions,
including four-dimensional (4D) phase space and one temporal
dimension. By this, the generated multidimensional data

typically reach terabytes, with increasing experimental size.7

Such a data production speed brings huge challenges to data
storage.8–10 In this case, a suitable compression algorithm
will greatly ease the storage pressure. Lossy compression
algorithms11–16 often provide extremely high compression ratios
but will introduce uncontrolled information loss.17,18 Lossless
compression that precisely preserves the original information
may be superior in these situations. Biomedical imaging data
always require lossless compression to avoid legal issues and
wrong diagnoses.19–22 Generally used lossless image compres-
sion methods, including PNG, FLIF,23 bzip2, and KLB,7 cannot
take full advantage of the redundancy of LFM data for optimi-
zation. In contrast, B3D24 uses 3D spatial continuity to increase
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the compression ratio, but the LFM data has redundancy in
4D phase space.4,25 Deep generative model-based lossless com-
pression methods such as VAEs26,27 and flow-based generative
models28–30 need a large amount of training data to tune the
model parameters and always limit the input data size in order
to control the model size. Thereby a large-scale image (e.g.,
2048 pixel × 2048 pixel) needs to be split into multiple pieces
for compression, resulting in over 10 min of compression time
currently. The performance of the VAE-based method is re-
stricted by the lower bound, which means the compression on
a single data example may show bad performance.30 Flow-based
lossless compression methods, based on fully observed models,
are suitable for a small number of communicating samples.27,28

Generative adversarial networks31 based compression methods
could obtain high-fidelity compression32–34 but they cannot be
used for lossless compression, since they do not optimize for
likelihood.35

In light-field photography for macro scenes, a light-field im-
age could be compressed according to its 4D structure by mak-
ing full use of angular continuity, which refers to the utilization
of time continuity in video compression techniques.36,37 In ad-
dition, coding a part of subaperture images of light-field data
with a depth map could also greatly improve the efficiency of
light-field compression.38 But both methods are achieved on
8-bit RGB light-field images with lossy compression, since
the loss of some information (e.g., tiny structures) in macro pho-
tographic data is tolerable. Therefore, existing methods cannot
be directly applied to the lossless compression of microscopy
data with low signal-to-noise ratio (SNR) and high dynamic
range (HDR), such as fluorescence microscopy data.

Here, we propose a 4D phase-space continuity-enhanced
bzip2 (PC-bzip2) lossless compression method, as a lightweight
and high-throughput compression tool for LFM data. By apply-
ing a prediction based on 4D phase-space continuity and
graphics processing unit (GPU)-based fast entropy judgment,
we could get a predicted image with a smaller size and then
compress the image with a multicore CPU-based high-speed
lossless compression method. Compared with the original
bzip2, we achieve almost 10% compression ratio improvement
while keeping the capability of high-speed compression. A fast
MATLAB interface and ImageJ plug-in were provided for ease
of use. To demonstrate the performance of our method, we
tested fluorescence beads data and different types of cell data
under different light conditions. Moreover, we showed the supe-
rior compression ratio of our method on time series data of
zebrafish blood vessels by introducing temporal continuity
prediction.

2 Methods
We built a light field fluorescence microscope based on a wide-
field microscope by inserting a microlens array into the image
plane of the tube lens [Fig. 1(a)]. In this way, the light field of
the sample will be formed behind the microlens array, which
then will be relayed to the image sensor for recording [Fig. 1(a)].
A sample zebrafish image captured by the light-field micro-
scope shows the basic structure of the data. The LFM data
has a 4D structure with not only spatial continuity but also an-
gular continuity. Angular continuity characterizes the relation-
ship between adjacent pixels in a microlens, while spatial
continuity characterizes the relationship between adjacent mi-
crolens pixels at the same position. Traditional image compres-
sion algorithms mainly make predictions by using adjacent

pixels. However, the predictors of a light field are no longer
limited by this constraint.

In this case, the angular or spatial continuity can be applied
alone for prediction. What is more, we can make full use of the
continuity in both angular and spatial domains, which is named
phase-space continuity, to make predictions for LFM data
[Fig. 1(b)], thereby theoretically improving the compression ra-
tio. Therefore, based on the phase-space continuity, we propose
a PC-bzip2 compression framework for lossless LFM data com-
pression [Fig. 1(c)]. The main idea of this framework is to add a
prior knowledge-based predictor for the LFM data before the
multicore CPU-accelerated bzip2 compression. In addition,
we propose a two-dimensional (2D) image entropy criterion
to determine which predictor is used to optimize the compres-
sion ratio. These two parts, as the preprocessing unit before
bzip2 compression, can ensure that each compressed image
has as little information redundancy as possible. Finally, the
header information, including the selected predictor information
and the coded data, can be packaged and stored in the file. In the
decompression process, after multicore CPU-accelerated bzip2
decompression, we only need to select the corresponding in-
verse predictor according to the header information to restore
the original LFM data (Fig. 1).

To sum up, the proposed PC-bzip2 lossless compression
pipeline can be decomposed into four parts: prediction part,
2D image entropy criterion, multicore CPU accelerated bzip2
coding, and packing header information and coded data. We
describe the details of each part in the following sections.
The detailed schematic of the algorithm is shown in Fig. 1(c).

2.1 Prediction part

The prediction of pixel values leverages the interpixel continuity
to reduce redundant information. Considering the 4D structure
of light-field microscopy (LFM) data, characterized by 4D
phase-space continuity, we separately predict the pixel value
employing spatial continuity, angular continuity, and 4D phase-
space continuity and compare their respective performances.
When using spatial continuity exclusively, the pixel value is
predicted by the neighboring pixels situated to the left, top,
and top left. When employing angular continuity separately,
the pixel value is predicted by the pixels in the same position
from the neighboring microlenses located to the left, top,
and top left. When incorporating 4D phase-space continuity,
however, the predicted pixel value is not only related to neigh-
boring pixels, but also influenced by those in adjacent micro-
lenses. The schematic of these different predictors is shown
in Fig. 1(b).

2.2 2D image entropy criterion

A 2D image entropy criterion is used to determine whether the
prediction of pixel value will improve the compression ratio. As
shown in Fig. 2, for the corresponding pixel, it not only has an-
gle-adjacent pixels S1, S2, and S3, but also spatially adjacent
pixels A1, A2, and A3. Therefore, the value of pixel S can be
predicted by considering both these continuities. This process
can be simply expressed as

PðXÞ ¼ ΓiðS1; S2; S3; A1; A2; A3Þ; (1)

where PðXÞ is the predicted value, Γi represents the i’th pre-
dictor (predictor A corresponds to the first predictor, while
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Fig. 1 PC-bzip2 framework for high-speed lossless LFM data compression. (a) Schematic of the
light-field microscopy system and LFM data structure. (b) Schematic of the predictors based on
spatial continuity, angular continuity, and 4D phase-space continuity. (c) A complete framework
including PC-bzip2 compression and decompression process. The compression pipeline consists
of prediction part, 2D image entropy criterion, multicore CPU accelerated bzip2 coding, and pack-
ing header information and coded data. The decompression pipeline consists of unpacking header
information, multicore CPU-accelerated bzip2 decoding, and inverse prediction.
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predictor ðAþ BÞ∕2 corresponds to the seventh predictor), as
shown in Fig. 2(c). After applying the predictor to the input
LFM image, the predicted image is obtained. Then we calculate
the difference between the predicted image and the original im-
age, yielding a 16-bit difference image, which can be formu-
lated as

I−16ðuÞ ¼ Iraw16 ðuÞ − Ipre16 ðuÞ; (2)

where Iraw16 ðuÞ is the value of pixel u in the 16-bit original image
Iraw16 ), Ipre16 ðuÞ ¼ PðuÞ is the value of pixel u in the 16-bit predicted
image Ipre16 , and I−16ðuÞ is the value of pixel u in the 16-bit differ-
ence image. For further storage convenience, we map the value of
I−16ðuÞ to positive numbers Q16½I−16ðuÞ�, using odd numbers to re-
present positive values and even numbers to represent negative
values. This can be mathematically described as

Q16½I−16ðuÞ� ¼
�
2 � jI−16ðuÞj − 1; I−16ðuÞ < 0

2 � jI−16ðuÞj; I−16ðuÞ ≥ 0
: (3)

We further realign the 16-bit predicted image as an 8-bit data
string and do a GPU-accelerated Burrows-Wheeler transform
(BWT) on the 8-bit data string, which can be expressed as

S8ðm; nÞ ¼ BWTACfR8fQ16½I−16ðuÞ�gg; (4)

where S8ðm; nÞ is the characters at positionsm and n in the 8-bit
data string S8, R8 is the operator to realign 16-bit data to 8-bit,
and BWTAC is the GPU-accelerated BWT. BWTAC is slightly
different from the general BWT. From input to output, the gen-
eral BWT includes three main steps: generating all rotations,
sorting all rotations into lexical order, and taking the last column
of all rotations. Different from the general BWT, when sorting
all rotations, the GPU-accelerated BWT only considers the first

(a)

(c)

(b)

Fig. 2 Main functions used in this work for LFM data compression. (a) Schematic of LFM data
structure. S1, S2, S3, and X are adjacent in the spatial plane; A1, A2, A3, and X are adjacent in the
angular plane. (b) The functions used in the predictors. The first four are common prediction func-
tions in JPEG based on adjacent pixel information and the last one is to map all predicted values to
a positive interval. (c) Lossless predictors for X based on the schematic in (a). Phase-space func-
tion means to use 4D phase-space continuity to predict X , angle function means that only
angle continuity is used to predict X , and space function means using spatial continuity alone
to predict X .
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character of each rotation. And if the first character of two ro-
tations is the same, we keep the sorting order of these two ro-
tations consistent with the generation. In this way, parallel
acceleration can be achieved, and the time to determine whether
the prediction is effective can be greatly reduced. After that,
the 2D image entropy of the transformed data is calculated.
Here, we suppose the transformed 8-bit data string as
S8 ¼ ½x1; x2;…; xn� (x1 is an 8-bit integer). In order to retain
the sequential information of adjacent characters in the data,
which is an essential part of move-to-front transform in the sub-
sequent compression, we combine two adjacent 8-bit integers
into a 16-bit integer, i.e., the data string is converted to a
16-bit data string S16 ¼ ½x1x2; x2x3;…; xn−1xn� (xn−1xn is a
16-bit integer). Then, the 2D image entropy of the transformed
8-bit data string EðS8Þ could be calculated as

EðS8Þ ¼
X65535
t¼0

Pt

n − 1
log

�
Pt

n − 1

�
; (5)

where t is the value of a 16-bit integer in S16, Pt represents the
frequency of 16-bit integer value t, and n is the length of an 8-bit
data string S8. A detailed schematic of the fast calculation of 2D
image entropy is shown in Fig. 3. Subsequently, we evaluate the
compression performance of each predictor’s output using
2D image entropy and identify the predictor with the lowest
2D image entropy as the final predictor. This operation can
be expressed as

i ¼ FðminfEigÞ; i ∈ f0,1;…; 7g; (6)

where i corresponds to the index of the predictor with the best-
estimated compression performance, Ei represents the value of
2D entropy when the predictor is the i’th (with the 0’th predictor
indicating no predictor), and Fð�Þ is used to locate the corre-
sponding index for the value.

2.3 Multicore CPU accelerated bzip2 coding and
packing

After validating the effectiveness of the prediction in enhancing
compression ratio through 2D image entropy, the predicted im-
age is then compressed utilizing the multicore CPU accelerated

bzip2 algorithm. We reused the KLB code for our own purpose.7

KLB is currently one of the most advanced methods for bzip2
acceleration. The main idea of KLB is to split data into multiple
blocks and then compress them in parallel, getting the utmost
out of the multicore design of advanced computers. The KLB
compression process consists of three steps. First, the data to be
compressed is divided into some blocks. The block number cor-
responds to the number of threads supported by the computer
processor, representing the maximum number of parallel oper-
ations. Second, multiple blocks are simultaneously compressed
using the bzip2 algorithm, which is the main reason for the
speed improvement of KLB compared to general bzip2.
Finally, the compression results of each block in the previous
step are written into the output file in turn, with the relevant
information of the image and the block packed at the same time.
Since we use different predictors for different images according
to the 2D image entropy judgment result, we need to pack the
predictor information into the final compressed file. Here, the
predictor information is represented by an 8-bit unsigned integer
in the header information of the final compressed file. The map-
ping table of predictors can be viewed in Fig. 2.

3 Results

3.1 Different Compression Ratios for Different SNR
Images

We investigated different predictors in the compression algo-
rithm. The schematic of the LFM data is shown in Fig. 2(a).
Among the seven types of predictors mainly applied in tradi-
tional compression methods (such as PNG and JPEG), four
of them utilize more than one adjacent pixel for predictor cal-
culation [Fig. 2(b)]. We then extend these predictors to the LFM
data [Fig. 2(c)], including angle prediction, space prediction,
and phase-space prediction.

To verify the performance of our PC-bzip2 compression ex-
perimentally, we imaged the fluorescent beads and MCF-10A
cells separately with the LFM under the different exposure
times [Fig. 4(a)], where the image of the fluorescent beads
represents typical LFM data without continuous structural in-
formation, while the image of the MCF-10A cells represents a
typical LFM data with better structural information. Different
exposure times will cause images to have different SNRs. Then
we tested the performance of all the phase-space predictors

Fig. 3 The schematic of the 2D image entropy calculation. In BWT transformation, the realigned
16-bit image sequence is regarded as an 8-bit image sequence by splitting each 16-bit value into
high and low 8 bits. After BWT transformation, every two adjacent 8 bits will be formed into 16 bits
for histogram statistics.
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Fig. 4 Comparing different compression ratios on images of different specimens with different
SNRs. (a) Two groups of samples are captured at different exposure time (the change of the ex-
posure time results in different SNRs on images). The beads images are obtained by imaging
green fluorescent beads with the LFM, and MCF-10A images are obtained by imaging MCF-
10A cells with the LFM. The image in the lower-right corner is a close-up marked by the yellow
box. (b) The performance comparison on MCF-10A images with different predictors. The auto-
matic criterion can accurately choose ðAþ BÞ∕2 as the optimal predictor method and find the
optimal compression ratio as well. Compared with the compression ratio without the prediction,
the maximum improvement is up to 0.77 bits/dim. (c) The performance comparison on beads
images with different predictors. The predictor did not improve the compression ratio but the au-
tomatic criterion could always locate the best compression ratio. (d) The performance comparison
of angle prediction (ac-bzip2), space prediction (sc-bzip2), and phase-space prediction (PC-bzip2)
on MCF-10A images. Obviously, the phase-space prediction works best. (e) The performance
comparison of KLB and PC-bzip2 in compression time, decompression time, and compress ratio,
respectively, on MCF-10A images. The location of the rectangle corresponds to the compression
ratio, its size corresponds to the sum of compression and decompression time (as indicated by the
numbers next to it), the light color corresponds to the compression time, and the dark color
corresponds to the decompression time.
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[Figs. 2(b) and 2(c)] on these two types of LFM images with
different SNRs. We find that as the image SNR increases
(i.e., more information is detected within the image), the com-
pression ratio gradually increases, which means the increase in
the number of bits required for each dimension for all the
predictors [Figs. 4(b) and 4(c)]. For the images of the fluores-
cent beads without continuous structural information, the
prediction step did not improve the final compression ratio
[Fig. 4(c)]. But for the MCF-10A cells images with better con-
tinuous structure information, the prediction step can signifi-
cantly increase the final compression rate [Fig. 4(b)] and the
maximum improvement can reach 0.77 bits/dim.

In the compression tests of both fluorescent bead images and
MCF-10A cell images, the 2D entropy criterion can accurately
predict the optimal predictors with the optimal compression
ratios [Fig. 4(b) and 4(c)]. In addition, we further tested the
predictor (Bþ ðA − CÞ∕2) using angle prediction, space predic-
tion, and phase-space prediction separately [Fig. 4(d)], and the
phase-space predictor showed the highest compression ratio.
In addition, to further demonstrate the enhancement of the
compression ratio in our PC-bzip2, we compared our PC-bzip2
with KLB on the images of MCF-10A in terms of time con-
sumption (including compression and decompression) and com-
pression rate. With almost no additional time consumption, the

Fig. 5 Compression performance by extending PC-bzip2 to the time dimension. (a) Two sets of
20-frame videos are obtained by imaging larval zebrafish with different laser powers using the
LFM [Fig. 1(a)]. The low excitation power is 3.2 mWmm−2 (488 nm) and the high excitation
power is 16.1 mWmm−2 (488 nm). The image in the lower-right corner is a close-up marked
by the yellow box. (b) Comparing the compression ratios on the video shown in (a) using angle
prediction (ac-bzip2), space prediction (sc-bzip2), phase-space prediction (PC-bzip2), and,
respectively, adding time dimension prediction to them (ac-bzip2+time, sc-bzip2+time, and
PC-bzip2+time). (c) Comparing the compression ratios of KLB, PC-bzip2, and PC-bizp2 with
temporal extension (PC-bzip2+time).
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compression ratio can be increased by 10% [Fig. 4(e)]. This tiny
time gap can be further reduced with the upgrade of the GPU.

3.2 Extension to Time Series Data

Since the recording of biological dynamic processes such as
neuron activity by LFM usually lasts for a long time with a
high frame rate, massive quantities of time series data will

consequently be generated. Therefore, we have extended our
method to the time dimension to further improve its practicality
(Fig. S2 in the Supplementary Material). When performing loss-
less compression on time series LFM data, we consider intro-
ducing the temporal continuity into the basis of original 4D
phase-space continuity. First, in order to find the best predictor
for a single frame, the first frame is processed according to the
compression method of PC-bzip2 [Fig. 1(c)], where the result of

Fig. 6 Comparison of PC-bzip2 compression performance on image data and time series image
data. (a) Comparison of lossy compression and lossless compression on biomedical image data
captured by light-field microscope. The left column shows the decompressed larval zebrafish im-
age by B3D lossy compression, and the right column shows the decompressed larval zebrafish
image by PC-bzip2 lossless compression. The upper right corner shows the magnified areas
marked by the yellow box, and the gray-scale histogram of the areas marked by the yellow
box is shown below. (b) Comparison of PC-bzip2 decompressed results and PC-bzip2 compres-
sion input image of MCF-10A cells image data with an exposure time of 1024 ms. The left column
shows the PC-bzip2 compression input image and its gray-scale histogram. The right column
shows the PC-bzip2 decompressed image and its gray-scale histogram. (c) and (d) The perfor-
mance of PC-bzip2 extended to the time dimension, where the images are randomly selected from
the time series. (c) A larval zebrafish image with laser power of 16.1 mWmm−2 (488 nm). (d) A
larval zebrafish image with laser power of 3.2 mWmm−2 (488 nm). The left column of each part is
the PC-bzip2 compression input images and their gray-scale histogram. The right column of each
part is the PC-bzip2 decompressed image and its gray-scale histogram.
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the 2D entropy criterion will be used as the main predictor in the
subsequent frames. For the subsequent frames, we introduce the
interframe predictor combined with the single-image predictor
to further reduce redundant information in time series data
(Fig. S3 in the Supplementary Material). Once the predictor
for a single image is determined by the first frame, all sub-
sequent frames will be predicted by introducing temporal con-
tinuity on the basis of this predictor. After all the time series data
are predicted and symbolized, the result will be divided into sev-
eral blocks (equal to the maximum number of threads supported
by the computer), and then compressed by bzip2 in parallel. The
compression result and header information are written to the
file.

To verify the advantage of the extension method, we imaged
the live larval zebrafish by recording 20 frames of the heartbeat
of the zebrafish under different exposure times [Fig. 5(a)],
which will be later compressed in the separate use of spatial
continuity, angular continuity, phase-space continuity, and their
respective expansions in the time dimension. Introducing the
time continuity into the predictor is beneficial for the improve-
ment of compression ratios [Fig. 5(b)]. Without time continuity,
the compression ratio using the spatial predictor is better than
that using the angular predictor. On the contrary, the method of
angular predictor combined with time continuity is better, which
means that the angular continuity is higher than the spatial
continuity in the time dimension. Compared with only keeping
the phase-space continuity, our method could realize higher
compression ratios by combining with the time continuity
[Fig. 5(c)]. We also compared our methods with the state-
of-the-art lossless compression method KLB. Whether or not
in combination with temporal continuity, our methods could
be significantly better than KLB in the compression ratio
[Fig. 5(c)]. Comparing the compression results under different
SNRs, it can be seen that the final compression ratios mainly
depend on the amount of information contained in the video.
To demonstrate the truly lossless compression of our method
on time series, we perform local statistics on the images ran-
domly selected from the decompressed time series under differ-
ent SNRs [Figs. 6(c) and 6(d)], showing that our method
achieves the really lossless compression and decompression
processes whether in the intuitive vision of the image or its
specific distribution.

3.3 Lossless Compression for Image and Video Data

In order to visually demonstrate the performance of our PC-
bzip2 method in generalizing to different data formats, includ-
ing image data and time series (video) data, we show multiple
sets of comparison of the images and their gray-scale perfor-
mance before and after PC-bzip2 compression in Fig. 6. We first
compared the decompressed larval zebrafish image compressed
by B3D and PC-bzip2, indicating that our method can realize
truly lossless compression [Fig. 6(a)] Then we compared the
decompressed image of MCF-10A image data [Fig. 6(b)] com-
pressed by our PC-bzip2 with its original images. Similarly, we
also compared the images from the time series zebrafish data of
different excitation powers [Figs. 6(c) and 6(d)]. The results
demonstrated the ability of our PC-bzip2 to achieve efficient
lossless compression and decompression performance for both
image data and time series image data.

4 Conclusion
We have developed a 4D phase-space continuity-enhanced
bzip2 lossless compression method to realize high-speed and
efficient LFM data compression. By adding a suitable predictor
determined by the 2D image entropy criterion before bzip2 or
KLB compression, we achieved almost 10% improvement in
compression ratio with a little increase in time. We demonstrated
the performance of the PC-bzip2 algorithm on fluorescence
beads data and cells data with different SNRs. Since the record-
ing of multicellular organisms by LFM usually generates huge
time series data, we further extended our method to the time
dimension to improve its practicality. We validate the temporal
extension of PC-bzip2 on time series recording of zebrafish
blood vessels. Compared to the predictor in the traditional com-
pression method, we fully exploited the structure of LFM image
or video to achieve high compression performance. We pro-
vided a fast MATLAB interface, and an ImageJ plug-in was pro-
vided for ease of use. The PC-bzip2 can become a promising
and lightweight tool for any light-field microscope.

Since the improvement of compression ratio in PC-bzip2 is
mainly determined by the redundancy of LFM data, the PC-
bzip2 algorithm will not show significant improvement on all
samples. Therefore, in our method, we use the 2D image en-
tropy criterion to choose a suitable predictor or directly apply
the bzip2 compression algorithm without a predictor for the
adaption to different samples. Further improvement may include
extending the algorithm to the spectral dimension and optimiz-
ing the time consumption of the 2D image entropy criterion. We
believe such improvements in compression performance will
bring advanced data storage capacity with a lightweight tool
to the broad microscopic community, facilitating mass data stor-
age and processing in various biomedical applications like
multicellular organism observation.
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